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Executive Summary 

 

 The movements of five acoustically tagged Pagrus auratus in the Cape Rodney-

Okakari Point Marine Reserve were tracked over a five month period.  During this time, 

all fish showed a high level of site fidelity to particular areas of reef, with the widest 

ranging fish having a core area of 300m2. Additional analysis of the five fish revealed a 

degree of individual variation that represents a spectrum of site attached behaviour.  The 

observed spatial ranges of these fish were not different from short-term data from thirteen 

P. auratus monitored after voluntarily ingesting transmitters. The space utilization 

patterns from one of these thirteen fish is presented here.  Seasonally, movement patterns 

varied little between February (summer) and May (winter).  However, each fish was 

observed to make excursions to the same non-core area during February and up to 16% of 

their time was spent in this area.  We tentatively suggest that offshore reserve boundaries 

are placed at a distance of at least 540 m from the edge of any reef structure in order to 

fully protect resident snapper.  
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Introduction 

 

 Some of the potential benefits of marine reserves are to increase 

abundance and size of animals within them, increase recruitment and sustain genetic 

diversity of targeted species (Dugan & Davis 1993).  Increased abundance and size of fish 

species due to reserve protection has been demonstrated (Bennett & Attwood 1991, 

Millar & Willis 1999) but direct proof of such effects are rare (Willis & Babcock 1998b).  

Demonstration of effects on recruitment and genetic diversity will require studies on 

much larger spatial and temporal scales than those that have been conducted to date.  A 

further potential benefit is the emigration of targeted species to fished areas adjacent to 

reserves.  Such emigration would justify their use not only for conservation but also as 

fisheries management tools on much more accessible spatial and temporal scales (Alcala 

& Russ 1990, Attwood & Bennett 1994, Alison et al. 1998, Kramer & Chapman 1999). 

This has only been described once. When the collapse of reserve protection at Sumilon Is. 

in the Philippines resulted in a reduction of catch per unit effort  (CPUE) in previously 

fished adjacent areas (Russ & Alcala 1996).  Despite this lack of evidence marine 

reserves remain a popular option as a supplement to existing fisheries regulations.,  

Compared to mainstream fisheries control regulations, such easy and cheap management 

makes marine reserves an attractive tool (Dugan & Davis 1993).    

 

Marine reserve effectiveness can be optimised by designing spatial configuration 

(i.e. size, shape and habitats) to ensure the protection of the most important recreational and 

commercial target species.  Information on movement patterns, activity and home range 

size of the species concerned is considered very important to reserve design (Roberts & 

Polunin 1991, Attwood & Bennett 1994, Holland et al. 1996, Zeller 1997, Alison et al. 

1998, Woodroffe & Ginsberg 1998, Kramer & Chapman 1999, Willis  et al. 2000).  

Traditionally such information has been gathered through mark and recapture studies.  Such 

studies have shortcomings, such as the restriction to usually one recapture locality for each 

fish (Zeller 1999).  Advances in technology have allowed more detailed behavioural studies 

to take place.  With the advent of ultrasonic telemetry individual fish can be continuously 

tracked for reasonable periods of time.  It is important that such fine scale monitoring is 
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backed up with more traditional long term tagging of a larger sample size of fish (Willis et 

al. in press).   

 

 The New Zealand snapper (Pagrus auratus:  Sparidae) is one of the most 

important recreational and commercial fish species in New Zealand (Annala & Sullivan 

1996).  A surprisingly small amount of research has been conducted on the movement 

patterns of P. auratus.  Fishermen and scientists alike have long believed that P. auratus 

follow a seasonal migration into shallow water (Cassie 1956, Crossland 1976).  This is 

commonly referred to as the ‘schooling snapper theory’.  It is believed that such 

movement is related to water temperature or the formation of spawning aggregations 

(Paul 1976).  This theory is somewhat at odds with observed build-up of P .auratus 

abundance in the Cape Rodney-Okakari Point Marine Reserve (hereafter referred to as the 

CROP reserve) (Willis et al. 2000).  This build-up and the spatial distribution of P. 

auratus within the reserve (Willis et al. 2000), is more consistent with the alternative 

theory, that a proportion of P. auratus are year round residents on reefs (the 'Kelpie' 

theory).    

  

 Other techniques have also been used in the CROP Reserve to study P. auratus 

movement.  Visible implant fluorescent elastomer (VIFE) tags have been assessed and 

found to be a useful tool for monitoring the movement of P. auratus (Willis and Babcock 

1998a).  So far results show site attachment to an area of only a few hundred metres over 

a period of greater than three years (Willis et al. in press).  This strong evidence for site 

attachment, as opposed to long held beliefs that P. auratus are a wide-ranging species, 

appears to be a contradiction.  However, work on galjoen (Coracinus capensis) has 

shown that within a species more than one fish dispersion pattern is possible (Attwood 

and Bennett 1994).  The importance of such information to sustainable fisheries 

management has been realized in Shark Bay, Western Australia where P. auratus exhibit 

both resident and mobile behaviour in a small geographic region,  resulting in separate 

management of the two stocks (Moran 1987). 

 

 The site of this study is the Cape Rodney-Okakari Point (CROP) Marine Reserve.  

By use of angling surveys and baited underwater video (BUV), the abundance of P. 
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auratus in the reserve was found to peak at the centre, and declined towards the edges of 

the reserve (Millar & Willis 1999, Willis et al.  2000).  There are two possible 

explanations for this pattern.  One is the lack of surveillance towards the reserve edges, 

which would make poaching without detection an easier task there.  Alternatively as 

distance to the reserve edge decreases, the chance of a P. auratus home range overlapping 

the boundary increases.  Therefore high levels of fishing on the edge of the CROP 

Reserve could explain the gradual decrease in P. auratus abundance from the reserve 

centre, and are consistent with the limited scale of movement suggested by VIFE tagging 

studies. 

 

Materials and Methods 

 

Experimental area and procedure 

 

This study was conducted in the CROP reserve from January to June 2000.  

During this time Pagrus auratus (snapper) were continuously tracked via the use of a 

radio-acoustic positioning and telemetry system (RAPT).  This system allowed accurate 

positioning (±1-2m) of individual fish every five minutes.  Each P. auratus monitored 

contained a transmitter set to an individual frequency, eliminating confusion between 

tagged fish.  The ultrasonic signal transmitted from each fish was then received by three 

moored sono-buoys that triangulated the position of the fish by differences in arrival time 

of the signal.  The sono-buoys were placed in a triangular configuration approximately 

300m apart, within Goat Island Bay (Fig. 1).  This area was chosen for its high abundance 

of P. auratus, shelter, and the presence of shallow reef habitat suitable for P. auratus. 

 

This study used V16 and V8 transmitters made by VEMCO electronics.  The V8 

transmitters (~8mm diameter and 4.5cm length) were small enough to be swallowed by P. 

auratus.  These transmitters were encased in bait and voluntarily ingested by P. auratus, 

in situ, without any handling.  The transmitter would be retained for around two days 

before being passed.  Once egested the transmitter could be found again, using a diver 

operated receiver (VUR96).  The transmitter could them be recycled and fed to another P. 

auratus.  This allowed smaller fish to be tracked, increased total sample size and allowed 
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a comparison of behaviour between surgically treated and undisturbed fish.  A total of 

thirteen P. auratus from ~250mm to 500mm FL and one Parapercis colias (~300mm FL) 

were monitored for around two days each by using this method.  The V16 transmitters 

(~16mm diameter and 7.5cm length) had a battery life conservatively estimated at 120 

days (but were found to last much longer). A total of five P. auratus (Table 1) received 

surgically implanted transmitters.  These V16 transmitters allowed long term, detailed 

monitoring of P. auratus movements.  

 

 

Table 1:  Transmitter frequency,  fish size and tagging date of all snapper that recieved 

V16 transmitters. 

 

Transmitter 

Frequency 

Snapper Size (FL 

mm) 

Date 

Released 

60 426 24/1/00 

54 415 24/1/00 

57 532 24/1/00 

63 400 30/1/00 

50 515 4/2/00 

 

Specimens of P. auratus were caught from the CROP reserve on hook and line to 

allow surgical insertion of the transmitter.  All fish were caught using modified barbless 

hooks to reduce injury and the probability of ‘gut hooking’.  Surgical procedures followed 

the methods described by Zeller (1997).  After capture each fish was retained in an 

aquarium tank for 24 hours to reduce stress levels before surgical insertion of ultrasonic 

transmitters.  Fish were anaesthetised with clove oil at 0.27 M l-1 , the maximum 

concentration used by Munday & Wilson (1997).  After the fish had become immobile it 

was placed in a sponge cradle and the incision area was de-scaled and then sterilised with 

Tamodine (Vetark products).  An incision approximately 2cm long was made 2-3cm 

anterior of the anus and the transmitter was then inserted into the gut cavity.  The wound 

was then sutured with nylon suturing thread and each fish received an injection of 

tetracycline antibiotic (50mg/kg of fish).  During surgery the gills were irrigated with 



 7

alternative doses of pure seawater and diluted anaesthetic to ensure the fish could still 

ventilate but remained unconscious.  Each fish was then left to recover for at least 24 

hours in an aquarium tank before release at the site of capture.  

 

Data analysis 

 

 Two weeks of monitoring data have been selected for analysis as being 

representative of the behaviour over the entire tagging period.  The first of these periods 

ran from the 10th to the 17th of February while the second period ran from the 20th to the 

29th of May.  Spurious positional fixes due to background noise, signal reflection, 

turbulence and changing of sono-buoy batteries were removed from the dataset manually 

following the procedure employed by Lokkeborg et al. (2000).  A positional fix was 

regarded as spurious if it was >50m from both its previous and successive fixes where 

these were close to each other.   

 

 Data were further analysed by dividing the total area tracked by the array into a 

grid composed of 20 × 20 m bins. The time individual fish resided in each of these bins 

was then calculated using Matlab software.  This required two assumptions:  i) The fish 

swam in a straight line between consecutive positional fixes as long as these fixes were 

not more than 30 minutes apart;  ii) The speed at which the fish swam between these two 

points was constant and equal to the distance divided by the time elapsed between two 

consecutive positional fixes.  This allowed the location of the fish to be accounted for 

between fixes as long as the tracking system located the fish every 30 minutes. 

 

Results 

 

Tagging and tracking system 

 

 Movement of surgically tagged fish immediately after release from holding tanks 

was not noticeably different from that observed at any time afterwards.  The transmitter 

signal from one P. auratus that received a surgical tag was observed to remain stationary 

shortly after release.  The fish could not be found and it was assumed to have died due to 
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bacterial infection (observed prior to release).  Any positional fixes obtained from this 

fish have not been included.    

 

 Behaviour of the 13 P. auratus that ingested V8 tags (Table 2) was very similar to 

that observed from fish that received tags via surgical implantation.  Fish 78Khz, for 

example, with a fork length of 500mm, was tracked for around three days (Fig. 2) before 

passing its voluntarily ingested transmitter.  Fish 78Khz utilized an area with a maximum 

diameter of 240 m and resided within an area of 180m2 for 56.2% of this time (Table 3).  

These characteristics are consistent with those of the twelve other P. auratus that were 

fed transmitters, and do not appear to be drastically different to the space utilization 

characteristics expressed by P. auratus that received their transmitters surgically. 

 

Table 2:  Size and date of tagging for snapper that ingested V8 transmitters.  Sizes were 

estimated visually by divers with an error of ± 25 mm. 

 

Snapper 
Size (FL 

mm) 

Tagging 
date 

325 9/03/00 
400 15/03/00 
450 20/03/00 
400 20/03/00 
300 22/03/00 
300 24/03/00 
400 27/03/00 
375 28/03/00 
350 13/04/00 
400 15/05/00 
350 15/05/00 
250 19/05/00 
500 22/05/00 

 

During the two periods of fish monitoring presented here, there were occasions 

when fish were not monitored for periods of up to five hours.  This was due to loss of 

transmitter signal from the receptive field or shut-down of the monitoring system.  Fish 

with core areas outside the centre of the sono-buoy array might also transmit a weaker 

signal to the monitoring system.  Nevertheless, the large number of fixes at otherwise 
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frequent intervals indicated that nearly all movements of tagged fish were successfully 

monitored and that the core areas of each fish were represented accurately.  The fact that 

each fish remained in almost exactly the same area (except fish 60 Khz) for a period 

greater than five months (Figs. 3 & 4), indicates that within the CROP reserve, these P. 

auratus are highly site-attached. 

 

 The behaviour of tagged fish did not appear to be unduly affected by human 

activities within the CROP reserve. Feeding of fish within the reserve had been actively 

stopped before this study began, and fish with surgically implanted transmitters would not 

allow divers to approach within visibility range (D. Parsons pers. obs.).  Despite the 

cessation of hand-feeding by the public P. auratus, tagged or otherwise, remained in Goat 

Island Bay.  While P. auratus still followed the glass bottomed boat and dive schools, 

tagged fish were never seen to be involved in such activity and observations of real-time 

tracking of fish gave no indication that tagged fish displayed such behaviour.  

 

Site fidelity 

 

The tracking system allowed us to build up a detailed picture of space utilization 

demonstrating that home ranges were not symmetrical but had complex and irregular 2-

dimensional topography.  The areas of highest usage (core areas) were not always central 

to the total area used (Fig. 5).  The data were used to define core areas, which were those 

20×20m bins in which fish spent greater than 2% of their time.  It was also common for 

fish to have two or more separate core areas (Figs. 6 & 7).  Utilization of space was seen 

to vary between individuals (Table 3).  Some fish spent a high proportion of time in one 

small area (Fig. 5) while space usage in other fish was more evenly dispersed (Figs. 8 & 

9).  Fish 54Khz was found to reside for more than 30% of both the February and May 

monitoring periods in the same 20×20m bin (Figs. 5 & 10).  Conversely, in May other 

fish did not even revisit some of the areas they had used most intensively in February 

(Figs. 6 & 8).  While the central home range areas of most fish moved less than 

approximately 40 m, the core area of fish 60Khz moved ~300m between February and 

May (Figs. 11 & 12).   
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Seasonality 

 

 The degree of site fidelity expressed by each fish was found to vary between 

February and May (Table 3), although there was no consistent trend.  During this period 

fish 54Khz increased the percentage of time it resided in its core areas from 64.2 to 

81.6%. Conversely fish 50 & 60Khz both began to utilize more than one core area and 

decreased the time spent in these areas by 42.9 and 30.5% respectively (Table 3).   

 
Table 3:  Space utilization characteristics for six P. auratus monitored in Goat Island Bay.  Column 

headers are defined as:  (1) Maximum diameter is the greatest distance between any two positional fixes for 

each fish,  (2) maximum residency is the highest percentage of time each fish spent within one 20×20m bin,  

(3) size of core areas is calculated from the number of adjacent 400m2 bins with greater than 2% residency 

(if two separate areas with greater than 2% residency exist then the size of each core area is listed) and (4) 

percentage residency within core areas is the total percentage of time each fish spent within each respective 

core area as defined in (3). 

 

  (1) Max. 
Diameter 

(m) 

(2) Max. 
Residency 

(%) 

(3) Size of 
Core Areas 

(m2) 

(4) Residency (%) 
within Core Areas 

50Khz February 380 12.2 300 60.5 
 May 380 3.7 80 & 40 11.4 & 6.2 

54Khz February 500 30.2 140 & 60 55.2 & 9 
 May 400 30.5 160 & 20 78.6 & 3 

57Khz February 400    
 May 360 19.8 180 & 20 44 & 12.7 

60Khz February 520 34.8 120 72.9 
 May 460 7.4 220 & 80 37 & 11.4 

63Khz February 320    
 May 300 17.4 260 75.7 

78Khz February     
 May 240 12.3 180 & 40 & 20 56.2 & 6 & 2.9 

 

 During late February and early March, each of the five tagged fish made 

excursions of up to 300 m from their core area to North Reef, on at least one occasion  

This is represented in the data by a concentration of fixes in the bottom right of the graphs 

in Fig. 3 that are not present in the graphs of Fig. 4.  Such excursions contributed up to 

16.7% of the February monitoring period for Fish 54 Khz. 
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Table 4: Probabilities of individual fish being found at varying distances from their 

respective core areas. The tagged fish were fish 60 Khz and fish 54 Khz. 

 

 60Khz 
(May) 

54Khz 
(May) 

Core area size 200m2 160m2 
Outside of core area 0.63 0.214 

>60 m from core area 0.415 0.078 
>120 m from core 

area 
0.31 0.013 

> 180 m from core 
area 

0.14 - 

> 240 m from core 
area 

0.019 - 

 

 

 The movement information obtained from the tags was used to estimate the 

proportion of time that a fish spends at varying distances from its core areas.  As noted 

above, the movements of individual fish varied substantially. The most active fish spent 

over 40% of its time at distances 60m or greater from the centre of its core area, while the 

least active fish spent only 7.8% of its time more than 60m from the centre of its core area 

(Table 3).  Fish 54Khz was highly resident and would only be expected to move more 

than 120 metres from its core area 1.3% of the time.  However during the same period 

fish 60Khz was located at distances greater than 120 m from its core area on 31% of 

occasions. 

 

Discussion 

 

 This study represents the first detailed fine-scale and long term monitoring of 

individual movement patterns in P. auratus.  Results show that all five surgically tagged 

snapper remained in areas of less than 400 m diameter for a very large percentage of the 

time.  This is supported by re-sightings of ~50 individually tagged P. auratus remaining 

within an area of hundreds of metres of release (Willis et al. in press).  This is not 

surprising as retaining a home range has energetic advantages that flow from familiarity 

and therefore efficient use of resources (Fretwell 1972, Kramer & Chapman 1999).  Even 
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fish from highly mobile families such as the Carangidae have some highly site-attached 

species (Holland et al. 1996), demonstrating that, just because a species is capable of high 

mobility, it does not always express this behaviour.   

 

Space utilisation patterns 

 

 All of the fish tracked at the CROP Marine Reserve appeared to use some areas 

within their home range more extensively than others.  This is logical, as some areas 

could provide better shelter or food than others.  It remains unknown whether these core 

areas are where a fish resides when it is inactive (Lokkeborg et al. 2000) or whether a 

disproportionate amount of foraging and/or social interaction are occurring at these 

locations.  This information could be crucial to understanding optimal reserve design and 

how marine reserves “work”.  If a fish is inactive in its core area the majority of foraging, 

and therefore the highest likelihood of taking a bait, will be conducted while at the edges 

of its home range.  The location of these core areas could therefore be either central or 

peripheral to important activities.  Regardless of what resources are being utilised, they 

are unlikely to be distributed in a regular and symmetrical manner, therefore it is not 

unexpected that the distribution of fish ranges is asymmetrical and even polymodal.  For 

example, during the February monitoring period excursions to the North Reef area 

resulted in a bipolar space utilization pattern as described above.  Fish spent up to 16% of 

time at this location, not including the time taken to travel to and from the reef.  The fact 

that all P. auratus with surgically implanted transmitters made such excursions from their 

core areas only in February may be of unique importance.   

 

Structural complexity is known to increase the abundance of prey items (Fretwell 

1972) and North Reef rises from 25 m depth to within 2 m of the surface.  If bait-fish 

school around North Reef during summer then snapper may be attracted to that area in 

February.  However February is also within the spawning period of snapper (Scott and 

Pankhurst 1992) and we speculate that excursions of tagged fish might be related to 

spawning behaviour.  Seasonal spawning aggregations have been demonstrated for fish 

such as coral trout (Zeller 1998) and in the case of this species the boundaries of a marine 

park no-fishing area were redefined in order to include the spawning area.  This 
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possibility needs to be confirmed for snapper, and potentially could be done by examining 

the small-scale distribution of snapper eggs during the spawning season (Zeldis 1998).   

 

Behavioural variation  

 

 It is our opinion that P. auratus express a full spectrum of mobility with some P. 

auratus moving hundreds of kilometres (Paul 1967) and others, as documented here,  

remaining resident in an area of only hundreds of metres in diameter.  However even 

within the group of resident P. auratus used in this study, variability in movement 

patterns was observed.  This is best illustrated by fish 54 and 60Khz (Table 3).  Although 

each fish used a total area of around the same size, fish 54Khz resided in, or at close 

proximity to, its core area for a much higher proportion of time than fish 60Khz.  If the 

core area of fish 54Khz was located 120 m from the reserve boundary, this fish would 

only be exposed to fishing pressure 1.3% of the time.  In contrast, fish 60Khz, located at 

the same distance from the reserve boundary, could be vulnerable to fishing up to 31 % of 

the time.  Fish 60 Khz’s core area would have to be 240 metres from the reserve boundary 

before it was exposed to the same level of fishing pressure as fish 54 Khz.  These figures 

assume that boundaries coincide with the direction of the fish’s movement and are clearly 

simplistic in nature, but they do illustrate the potential implications of variations in 

individual fish behaviour on fishing effects.   

 

An additional consideration to these simple variations in core area size is the 

potential for fish to shift their core area.  A core area shift of 300 metres was documented 

for fish 60khz between February and May.  If this occurred in the hypothetical near-

boundary situation suggested above, the centre of the second core area would be located 

60 m outside the reserve exposing this fish to fishing pressure for greater than 50% of the 

time.  Fish 54Khz remained resident in exactly the same 20×20m bin and would still be 

exposed to fishing pressure 1.3% of the time in the aforementioned hypothetical situation.  

This behavioural difference, while only manifested on a scale of hundreds of metres, 

would make a large difference to the probability of mortality.  Furthermore, the scale at 

which site fidelity and core area shifts operate could be expected to vary with location, 

depending on factors such as the availability of resources.  In areas with low resources 
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and/or high levels of intraspecific competition it would be sensible to assume P. auratus 

could need to be wider ranging than observed here. 

 

 Variations in the degree of site fidelity expressed by each fish were also noted 

between the two sampling periods.  While one fish increased its percentage residency 

within its core area in May, others were seen to use additional core areas and decrease the 

percentage residency within these areas.  There is therefore no clear indication of seasonal 

change in movement pattern shown in the tagged fish.  

 

Extra-reserve excursions and their influence on protected snapper populations 

 

While there are clearly many variables influencing snapper behaviour that we are 

only now beginning to understand, we have used a series of three assumptions to generate 

some guidelines for designing the size and boundary configuration of marine reserves.  

The first assumption is to use the “worst case” scenario, and base these guidelines on the 

most active fish.  This fish would require an area of radius 240m from the nearest 

boundary in order to ensure it did not spend more than 1% of its time in a fished area.  

One of the five fish (20%) displayed this behaviour.  The second assumption was that 

there could be a linear translation in core area of up to 300m.  Again, one of the five fish 

(20%) displayed this behaviour.  Thirdly, since there would be only a 50% chance of a 

core area shifting towards, rather than away from, a boundary in any but the smallest 

reserve.  We therefore calculate that the probability of a mobile fish spending more than 

1% of its time outside an area of 540 m radius is 2% (0.2 x 0.2 x 0.5).  The remainder 

would be even less likely to move outside this area.   

 

This is a tentative calculation, based on some very simplistic assumptions, 

however it does allow us to begin to attach numerical values to the distances that may be 

ecologically important in the context of snapper and marine reserves.  Consequently, we 

tentatively recommend that offshore reserve boundaries be placed at a distance of no less 

than 540 m from the edge of any reef structures.  Similarly, there is likely to be some 

effect of fishing on fish located adjacent to coastal boundaries of reserves if they have 

core areas less than 540 m from the boundary.  These estimates are conservative in that 
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they use values from the most mobile fish.  The observed pattern of lower fish abundance 

at the boundaries of the CROP reserve (Willis and Babcock 1998b) may be explained by 

limited movements of the magnitude we have described, however the effect seems to be 

occurring over distances greater than 540 m, and can in fact be seen in areas more than 

1000 m from the coastal boundaries.  If home range shifts do occur in response to density 

dependent factors it would be more probable that it would occur away from the centre of 

the reserve, where P. auratus abundances are highest (Willis et al.  2000).  This would 

result in 'spill over' into the fishery adjacent to the reserve.  While this can not be 

demonstrated here it could explain the observed pattern since the edge effect is much 

greater than 200m.  One of the methods through which density dependent factors operate 

is intra-specific aggression (Fretwell 1972), such interactions between P. auratus have 

been frequently observed towards the centre of the CROP reserve (D. Parsons pers. obs.). 

 

This report has made some general suggestions for marine reserve configuration based on 

simplistic scenarios of maximum levels of movement.  A more realistic set of suggestions 

and an analysis of the implications of marine reserve protection for snapper populations 

both within and outside of reserves can now, for the first time, be contemplated, based in 

part on the data we have collected.  Such an analysis will need to be based on spatially 

explicit numerical models of snapper populations, rather than simplistic assumptions such 

as we have used, and will be the next major step forward in this process.   

 

Conclusions 

 

 The degree of site fidelity expressed by P. auratus in this study is higher than 

documented by any other study.  However individual variation was also noted as being a 

major factor.  While fishing pressure was demonstrated to possibly have an effect on P. 

auratus hundreds of metres inside the reserve, other P. auratus could reside close to the 

reserve boundary with minimal chance of mortality.  The pattern of usage does not 

always appear to be uniform, can vary seasonally and fish can heavily utilize separate 

areas.  During February some fish spent up to 16% of their time outside of their core areas 

at a location only frequented during this period. 
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With a seasonal emigration of around 50% of P. auratus from inshore reefs 

(Willis & Babcock 1998b, Willis & Denny 2000) it appears that some fish are more 

mobile than others.  If a fish species has more than one level of mobility, inside a reserve 

the most highly resident fish will be favoured (Attwood & Bennett 1994).  For this 

reason, it is essential that a central area containing the correct habitats, where resident fish 

are removed from fishing pressure, be incorporated into reserve design.   
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Recommendations 

  

1. There is a need to compare movements of fish in central, peripheral and non-reserve 

locations.  Why are boundary edge-effects on fish density detectable at least 1km 

inside the CROP reserve, when core areas in the central reserve have a maximum 

radius of 200m? 

 

2. The reason for core area excursions should be further studied to determine whether 

they are feeding or spawning related.  Such excursions are a potential explanation for 

edge effects. 

 

3. Tagging of larger numbers of fish on a more extensive spatial scale (10’s of km) is 

needed to determine the timing and extent of movements and potential return of P. 

auratus that disappear from coastal reefs over winter.  The effectiveness of marine 

reserves in relation to snapper of a mobile nature can only be determined by 

expansive tracking. 

 

4. Numerical modeling of fish movements in relation to marine reserves should be 

undertaken in order to assess the implications of snapper movement patterns on the 

effectiveness of reserves, optimal reserve size, and ‘spillover’. 
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Fig. 1:  Map of the CROP Reserve showing the location of the buoy array.  Sono-buoys 
A,  B & C are positioned approximately 300m apart. 
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Fig. 2 :  Percentage residency time of fish 78Khz (voluntary ingested transmitter)
for the May sampling period (total tracking time = 3.2107).  
N.B. These contour plots use a grey scale of percentage residency time, 
where the darker tones represent a higher percentage residency
and each contour represents a 1% difference in residency.  
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Fig. 3:  Positional fixes of five individually tagged snapper 
from the 10th to the 17th of February 2000 (NB: individual fish defined by the frequency of their transmitter).
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Legend:

Fig. 4:  Positional fixes of five individually tagged snapper
from the 20th to the 29th of May 2000 (NB: Individual fish are defined by the frequency of their transmitter).
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Fig. 5 :  Percentage residency of fish 54Khz for the May monitoring period (total tracking time = 5.4622 days)
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Fig. 6 :  Percentage residency time of fish 50khz for the February monitoring period (total tracking time = 7.7172 days)
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Fig. 7 :  Percentage residency time for fish 57Khz in the May sampling period (total tracking time = 6.8241 days)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18



 27

 

 

 

-400 -300 -200 -100 0 100 200
X position (m)

-500

-400

-300

-200

-100

0

100

200
Y 

po
si

tio
n 

(m
)

Fig. 8 :  Percentage residency time of fish 50Khz for the May monitoring period (total tracking time = 6.9682)
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Fig. 9 :  Percentage residency time of fish 63Khz for the May monitoring period (total tracking time = 6.8055 days)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15



 29

 

 

 

-400 -300 -200 -100 0 100 200
X position (m)

-500

-400

-300

-200

-100

0

100

200
Y 

po
si

tio
n 

(m
)

Fig. 10 :  Percentage residency time of fish 54Khz for the February monitoring period (total tracking time = 7.7172)
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Fig. 11 :  Percentage residency time of fish 60Khz for the February monitoring period (total tracking time = 7.5593 days)
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Fig.  12:  Percentage residency time of fish 60Khz for the May monitoring period (total tracking time = 2.6754 days)
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