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Abstract

There is strong international agreement on the need for marine protected ar-
eas to reverse pervasive human impacts on the oceans’ biodiversity. However,
their implementation is often hampered both by legal difficulties in defining
reserves in international waters and the patchy nature of data in many off-
shore waters. We demonstrate the use of recent advances in statistical learning
and conservation prioritization to produce MPA scenarios with varying costs
and benefits for New Zealand’s Exclusive Economic Zone, based on the analy-
ses of distributions of 96 demersal fish species. MPAs based on our most cost-
effective scenario would deliver conservation benefits nearly 2.5 times greater
than those from equivalent-sized areas recently implemented at the request
of fishers, and at lower cost to them. Such results demonstrate the power of
quantitative, knowledge-based prioritization approaches, which can be applied
at high resolution and at oceanic scales.

Introduction
Ongoing and pervasive declines in marine biodiversity
at a global scale are driven by pressures including hu-
man exploitation, pollution, and environmental change
(Roberts 2002; Thrush & Dayton 2002; Pandolfi et al.
2003; Stokstad 2006). Perhaps most seriously, persistent
overharvesting has resulted in substantial declines in fish
catch, and nearly one-third of fish stocks are now sub-
ject to unsustainable exploitation (Ormerod 2003). Al-
though there is strong agreement on the need to establish
a global network of marine protected areas (MPAs) to re-
verse these losses (Laffoley 2006), such areas currently
protect only 0.6% of the world’s oceans (Wood 2006).
Their creation is hampered by a range of factors, includ-
ing legal difficulties in defining and protecting reserves in
international waters (Gjerde 2005), and/or a scarcity of
comprehensive data describing biological patterns, partic-
ularly in offshore waters.

Various methods are being used to provide improved
descriptions of habitats and/or biological values in ma-
rine ecosystems (e.g., Palumbi et al. 2003; Iampietro et al.
2005). These can serve as inputs to the growing range
of analytical tools to aid reserve design (e.g., Marxan—
Possingham et al. 2000; C-plan—Lombard et al. 2007) par-
ticularly in coastal and/or inshore waters (e.g., Sala et al.
2002; Airame et al. 2003; Leslie et al. 2003; Breen et al.
2004). In turn, other methods allow forecasts of fishery
responses to reserves (Ecopath and Ecospace; Pitcher et al.

2002). This article describes a proof of concept analysis
using a new combination of modeling methods that offer
important features for marine reserve design in offshore
waters, including: (1) realistic interpolation of species dis-
tributions based on biological and environmental data;
(2) ability to handle relatively fine-scale data over large
geographic areas; (3) obviation of the need for prior defi-
nition of planning units; and (4) identification of a nested
set of reserve solutions that comprehensively describe
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trade-offs between conservation benefits and reserve
extent.

We use as our study area the oceanic waters of New
Zealand’s Exclusive Economic Zone (EEZ), the fourth
largest in the world, in which Government policy is to
protect 10% of the total area as MPAs by 2010 (Anony-
mous 2000). We focus initially on the use of species dis-
tribution models (Guisan & Thuiller 2005) to interpolate
catch data for widespread fish species from patchily dis-
tributed research trawls across all parts of the Exclusive
Economic Zone with trawlable depths. We then analyze
these species distributions using spatial prioritization soft-
ware, deriving a range of MPA scenarios with widely
varying conservation returns and costs to fishers. Our
most cost-effective scenarios deliver conservation bene-
fits that substantially exceed those delivered by areas re-
cently set aside at the instigation of fishers.

Materials and methods

Predicting fish species distributions

While we had detailed fish catch data for 96 com-
monly caught, demersal (bottom-dwelling) fish species
from more than 21,000 research trawls (Figure 1A),

Figure 1 Geographic distribution of a typical species (Mora moro). Shown are: A. The actual presences and absences in the research trawls—note the

uneven geographic distribution of these. B. The predicted catch per unit effort. In A, dashed lines indicate the 200 and 1950 m depth contours, which

define the limits within which analyses were performed.

the patchy spatial distribution of these required use of
a robust interpolation procedure to provide geograph-
ically comprehensive descriptions of fish distributions.
This was achieved using a statistical implementation of
Boosted Regression Trees (BRT), a recently developed
technique that uses stochastic gradient boosting to fit a
model (Friedman et al. 2000; Friedman 2002), enabling
sophisticated regression analyses of complex responses
optimized for high predictive performance (Elith et al.
2006; Elith et al. 2008). This method differs from con-
ventional regression in that, rather than fitting a single
“best” model, it fits an ensemble of simple regression tree
models. As a consequence, BRT draws on the strengths
of regression trees, that is, their ability to handle contin-
uous and categorical predictors while ignoring extrane-
ous predictors, their accommodation of missing values in
the predictors, and their fitting of interactions between
predictors, while using boosting (the adaptive fitting of
multiple models) to overcome their tendency to instabil-
ity and lack of accuracy (Friedman & Meulman 2003).

To maximize the predictive performance of our BRT
models, we chose environmental predictors that were
functionally relevant to fish (Table S1, Leathwick et al.
2006). They included estimates of the trawl depth,
temperature, and salinity at the sea floor, primary
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Figure 2 Species-group responses describing the

decline in conservation value of focal cells as cells in

their neighborhood are removed from the solution.

productivity at the ocean surface, and zones of ocean
mixing and tidal currents. Estimates of sea floor wa-
ter temperature and salinity were based on the World
Oceans Atlas (Boyer et al. 2005). Estimates of sus-
pended particulate matter, dissolved organic matter,
and chlorophyll-a concentration were all derived from
satellite imagery (Pinkerton & Richardson 2005). Data
describing trawl distance, speed, and mesh size were in-
cluded to allow standardization of catch success by tak-
ing account of differences in trawl parameters. While it
would have been desirable to calculate the area swept for
each trawl, lack of consistent collection of data describing
net door spread, and headline height precluded this.

Because of the large number of trawls, we randomly
split them into two sets—the first contained 17,000 trawls
and was used for model fitting, while the second (4,314
trawls) was used solely for validation. Species catch data
described the weight in kilograms of all species caught in
1% or more of trawls. Given the highly skewed (zero-
inflated) distribution of the catch data, we fitted two
BRT models for each species, and combined them using a
delta-log-normal approach (Venables & Dichmont 2004).
The first model for each species predicted its probability of
catch using the presence/absence transformed data from
all trawls in the training dataset, assuming binomial er-
rors. The second was fitted to data only from those trawls
in which a catch for a species occurred, and predicted the
log of the catch, assuming normally distributed errors.

All regressions were fitted in R (R Development Core
Team 2006) with the “gbm” library (Ridgeway 2006),
and using a tenfold cross validation procedure to optimize
model complexity for prediction (Elith et al. in press). The
predictive performance of the final regression models was
evaluated in two ways. First, estimates of predictive per-
formance were calculated as part of the cross-validation
procedure used to optimize model complexity. Second,
we independently estimated the performance of all mod-
els by predicting for the evaluation data set both the
probability of occurrence for each species (all trawls, n =
4,314), and its catch (trawls in which each species were
caught). These predictions were then compared with the
actual values using the area under the Receiver Operating
Characteristic curve (AUC) statistic (Fielding & Bell 1997)
for the predictions of occurrence, and the Pearson’s cor-
relation coefficient for the catch estimates.

Finally, the presence/absence and catch models were
used to make environment-based predictions of the catch
per unit effort for each species for 1.59 million grid
cells, each of 1 km2 (Figure 1B). In making these pre-
dictions, we assumed fixed trawl parameters, that is,
a trawl distance of 4.26 km, a speed of 5.92 km/h,
and a codend mesh size of 75 mm. These predictions
covered all of New Zealand’s Exclusive Economic Zone
with depths between 200 and 1950 m, including the
1.57 million grid squares for which no trawl data
were directly available. Separate predictions were made
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of the probability and the amount of catch for each
species, with the latter back-transformed with correc-
tion (Duan 1983) so that final values were in kilograms.
Probability and catch predictions were then multiplied
together to form one predictive data layer (kg/standard
trawl) for each species.

MPA design and evaluation

In the second phase of our analysis, we used the reserve
selection software Zonation (Moilanen et al. 2005, Ap-
pendix S1 in Supplementary Material) to design and eval-
uate a range of potential MPA configurations, based on
the predicted fish distribution data layers created in the
first phase of our analysis. Zonation is based on the spec-
ification of priorities and connectivity responses for bio-
diversity features (Moilanen 2007) rather than on setting
conservation targets as for most other conservation plan-
ning methods (Sarkar et al. 2006). It is particularly suited
to the analysis of very large data sets (Kremen et al. in
press) and provides solutions that have both high conser-
vation value and are well balanced with respect to rep-
resentation levels, connectivity, and spatial patterns for
species (Moilanen 2007).

The Zonation meta-algorithm (Moilanen et al. 2005;
Moilanen 2007) starts by assuming that the full landscape
is protected, and proceeds by progressively identifying
and removing cells that cause the smallest marginal loss
in conservation value. Removing grid cells of least con-
servation value first leaves the areas of highest value until
last, and these areas are the most relevant for conserva-
tion. The critical part of the algorithm is the definition
of marginal loss, which also allows species weighting and
species-specific connectivity considerations to be applied.
Here, we used the core-area definition of marginal loss
(Moilanen et al. 2005; Moilanen 2007), which in simple
terms embodies the following principles: (1) of two oth-
erwise equal locations, that with a lower occurrence for
the most important species is removed first; (2) assuming
two otherwise equal locations, that with the occurrence
of a lower-weight species is removed before that with an
equal occurrence for a high-priority species; (3) assuming
two identical locations with identical original occurrence
levels for two different species, the one is retained that
contains a species that has lost more of its distribution; (4)
of two otherwise identical locations, that with higher cost
is removed first. Mathematically, marginal loss in core-
area Zonation is defined as

δi = max
j

Q i j (S)w j

C i
= pi jw j

C i ∗
∑

k∈S
pkj

(1)

where wj is the weight of species j, pkj is the occurrence
level of species j in site i, and Ci is the cost of adding cell

i to the reserve network. The critical part of equation (1)
is Qij(S), the proportion of the remaining distribution of
species j located in cell i in the remaining set of cells, S.
When a part of the distribution of a species is removed
by cell removal the proportion located in each remain-
ing cell goes up. In this manner, Zonation tries to retain
high-quality core areas for all species until the end of cell
removal, even if the species is initially widespread and
common (Moilanen et al. 2005). Other variants of Zona-
tion cell removal implement conservation planning based
on additive value (Arponen et al. 2005) and specification
of targets (Moilanen 2007), but we used core-area Zona-
tion as it guarantees the retention of high-quality areas
for all species, including those that occur in otherwise
species poor areas.

All Zonation analyses used the predicted distributions
of 96 fish species as their primary input. Nineteen en-
demic species were given higher priority in all analyses
by allocating them a weight of five, while all other species
were given a weight of one. An analysis of the sensitiv-
ity of outcomes to use of differential species weightings
is provided in Appendix S1. To take account of the likely
impacts of fragmentation on species protection provided
by MPAs, we applied boundary quality penalties that al-
low the value of a target cell for a particular species to be
reduced as cells in some surrounding neighborhood are
removed (Moilanen & Wintle 2007). Losses were assessed
in neighborhoods of varying size and at varying rates
(Figure 2), depending on the known habits of species. For
species living predominantly on the sea floor, mostly flat
fish and eels, we used a 3 by 3 cell neighborhood, and
a relatively slow loss of value (curve 1 in Figure 2), that
is, 50% of the surrounding cells can be removed with-
out loss of value in the target cell, but beyond this, re-
moval of surrounding cells results in a linear decline to a
value of 0.2 when all surrounding cells were removed.
For species living immediately above the sea floor but
caught largely as solitary individuals we used a 5 by 5
cell neighborhood and a slightly steeper loss curve (curve
2 in Figure 2). For species living above the sea floor but
caught frequently as schooling aggregations we used a 7
by 7 cell neighborhood and a loss curve that declined lin-
early to a value of zero when all neighboring cells are
removed (curve 3 in Figure 2). Finally, for the most mo-
bile, semi-pelagic and schooling species we used a 9 by 9
cell neighborhood and a loss curve in which the value of a
target cell diminishes to 20% when 50% of the surround-
ing cells are removed, and to zero when all surrounding
cells are removed (curve 4 in Figure 2). A sensitivity anal-
ysis demonstrating the effects of these settings is provided
in Appendix S1. One major algorithmic option in the
software, uncertainty analysis (Moilanen et al. 2006), was
not used here, but provides the capability to adjust the
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optimization process where greater uncertainty is associ-
ated with species predictions for some regions, for exam-
ple, in the far north-east of our study area where there
are only a few trawls.

With these commonalities, we carried out four analyses
that explored conservation benefits and their costs under
varying conditions:

Unconstrained or “no cost constraint” analysis.

Equal costs were used for all cells, that is, this analysis
was driven solely by consideration of species distribu-
tions, connectivity and conservation value with no regard
to potential costs to fishers.

“Full cost constraint” analysis.

Species weightings and boundary quality penalties were
applied as in the previous analysis, but costs for grid cells
varied depending on fishing intensity as recorded by fish-
ers during the 2005 calendar year. The fishing intensity
or “cost” data layer (Figure S1) was created by applying a
kernel smoother with a 20 km smoothing neighborhood
to the start locations of a completely independent set of
47,700 commercial trawls conducted during 2005. The
resulting spatial data layer was then scaled to describe
relative fishing intensity, with values ranging from zero
for no fishing to 100 for maximum fishing intensity. Be-
cause Zonation requires all cost estimates to be greater
than zero, we allocated nonfished grid cells a nominal
value of 1.0e-6 for this analysis.

“Modified cost constraint” analyses.

Three modified cost analyses were run, each of which
used differing modifications of the cost layer to alter the
balance between costs for fished and nonfished cells and
allowing a more comprehensive exploration of scenarios
intermediate between our “no cost constraint” and “full
cost constraint” scenarios. The modified cost estimates
were calculated as:

C modified
i =

{
a, for unfished cells

a + 1 + log10(C i), for fished cells
(2)

where a is a parameter used to tune the influence of
cost, and Ci is the true fishing opportunity cost estimate
for the cell. Three analyses were carried out using modi-
fied cost layers with values for a set to 1, 2, and 5, higher
values decreasing the importance given to protecting sites
preferred by fishers when selecting optimal sets of sites
for protection.

“BPA” analysis.

In a final analysis, we used Zonation to assess the costs
and benefits of a set of benthic protection areas (BPAs)

recently implemented at the request of fishers that pro-
vide partial protection to benthic species through the ex-
clusion of bottom trawling (Ministry of Fisheries 2007).
These areas were selected by fishers to protect a repre-
sentative range of ecosystems based on a broad-scale en-
vironmental classification of New Zealand’s marine envi-
ronments, along with a number of particular high value
sites. They avoided areas fished either currently or in the
past (Seafood Industry Council 2008). Although the BPAs
encompass 23.5% of New Zealand’s EEZ, substantial parts
of them (72.2%) are located in waters that are too deep
to trawl with current technologies (> circa 2000 m). We
therefore restricted our analysis to those parts of the BPAs
that are in offshore waters of trawlable depths (200–1950
m), where they comprise 16.6% of the geographic area.
In this replacement cost analysis (Cabeza & Moilanen
2006), we required Zonation to retain those cells falling
within the BPA’s until all other cells had been removed,
enabling assessment of their conservation returns using
the same criteria as in our other analyses.

In summarizing the conservation outcomes for each of
the scenarios described above, we mostly use as a mea-
sure of performance the average percentage of species
distributions protected in a given fraction of geographic
area. We stress that this is an aggregate measure of per-
formance that summarizes statistics describing the qual-
ity, extent, and spatial distributions of individual species
(Moilanen 2007). Similarly, we also report the costs as a
function of the fraction of the geographic area protected
for each scenario: for the “full cost constraint” scenario,
these costs were calculated as an integral part of the anal-
ysis, while costs for the remaining scenarios were calcu-
lated retrospectively using the fishing cost layer described
above.

Results

Predicting fish species distributions

Depth, temperature, and salinity had the strongest
contributions to the outcomes of regression models
predicting the distributions of fish species (Table 1), to-
gether accounting for nearly half the variation in catch
when averaged across species. A further 13% of vari-
ation in species catch was accounted for by variables
identifying zones of high productivity and/or where
food resources are concentrated (chlorophyll-a and SST-
gradients). Three trawl parameters, trawl distance, trawl
speed, and net mesh size, together contributed approxi-
mately 14%.

Distributional models fitted for species showed ex-
cellent predictive ability both when assessed using
cross-validation and in predicting to independent trawls
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Table 1 Average contributions (%) of predictors describing environment

and trawl methods in statistical models predicting the presence/absence

and catch of 96 demersal fish species. Predictors are ranked in decreasing

order, based on their overall average contribution.

Presence/ Catch Overall

absence average

Trawl depth 33.5 17.9 25.7

Temperature 13.8 12.7 13.3

Salinity 8.2 10.6 9.4

Chlorophyll-a 6.6 7.6 7.1

Sea surface temperature 4.6 7.3 6.0

gradient

Tidal current 4.8 6.8 5.8

Codend mesh size 5.2 6.3 5.7

Trawl distance 3.7 5.8 4.7

Sea-floor slope 3.5 5.4 4.4

Year effect 4.1 4.6 4.3

Suspended particulate 3.9 4.2 4.0

matter

Trawl speed 3.0 4.6 3.8

Orbital velocity 3.1 3.4 3.3

Dissolved organic matter 2.0 2.8 2.4

withheld from model fitting. The two parallel sets of per-
formance estimates for the presence/absence models had
a correlation of 0.969, and those for the catch models a
correlation of 0.913. The presence/absence models for all
species had excellent discrimination of species occurrence
(mean AUC score = 0.950, range 0.86–0.99). By contrast,
the predictive performance of the regression models pre-
dicting species catch was more variable (mean correla-
tion = 0.534, range 0.05–0.82), and was strongly influ-
enced by the number of catch observations used in model
fitting. All species whose catch models showed poor
predictive performance (correlation < 0.3) were caught
in less than 5% of trawls. Final spatial predictions for
these species depended mainly on their presence–absence
models, and within the geographic range predicted as
occupied by any of these species, predicted values were
generally close to the mean catch. By contrast, the mean
correlation for species occurring in greater than 10% of
trawls was 0.67 with a minimum of 0.46. Final spa-
tial predictions of catch for these species showed much
greater variation reflecting the influence of environ-
ment on both the probability of catch and the amount
caught.

MPA design and evaluation

Results from our “no cost constraint” Zonation analy-
sis indicate both those cells with the highest conserva-
tion priorities (Figure 3A), and the progressive decline
in species protection as cells of lower conservation value

are removed from the solution (blue line in Figure 3D).
Note that these priorities are hierarchical, that is, the
10% of cells with the highest conservation value are con-
tained within the top 20% of cells, which are in turn
contained within the top 30% of cells, and so on. Re-
sults from this initial analysis indicate that setting aside
10% of the offshore parts of New Zealand’s EEZ with
trawlable depths would protect, on average, 27.4% of
the geographic range of each of the 96 fish species ana-
lyzed. At a species level, there is a general trend of greater
protection for species of more limited geographic range
(Figure 4A), that is, the spatial extent of a species’ ge-
ographic range sets the maximum amount of protection
that it can receive under any given degree of geographic
protection. Despite this inherent constraint, protection of
10% of New Zealand’s EEZ based on this scenario would
protect 20% or more of the geographic ranges of half of
the 96 species used as input to the analysis. Assignment
of higher weights to endemic species was effective, result-
ing in them receiving nearly 70% greater protection than
nonendemic species (40.8% versus 24.1%, F-statistic =
10.79, P = 0.001). Increasing the area protected to 20%
would increase average species protection to 46.4% and
83 out of the 96 species would receive protection of 20%
or more of their geographic ranges. Retrospective analy-
sis of the costs of implementing MPAs based on this sce-
nario indicate that protection of the 10% of cells with
the highest conservation value would result in a 22%
reduction in fishing opportunity (Figure 3D), reflecting
the strong coincidence between sites targeted by fishers
and those having the highest conservation values. Fi-
nally, use of neighborhood constraints for this analysis
identifies much more tightly aggregated groups of cells
to protect than when such constraints are not applied,
that is, use of boundary quality penalties not only al-
lows for varying degrees of species mobility, but also pro-
vides a more useful basis for the implementation of MPAs
with shapes meeting practical management requirements
(Leslie et al. 2003).

Use of the cost layer to influence cell selection in our
“full cost-constraint” analysis resulted in a markedly dif-
ferent set of priority cells being identified (Figure 3B)
than those selected in our initial scenario, with only two-
thirds of the top-ranked cells (top 10%) in these two sce-
narios shared in common. This reflects the manner in
which cells favored for fishing were removed early in the
analysis, even if they had high conservation value per
se. Despite this, MPA protection with 10% geographic
coverage based on this solution (Figure 3D) would pro-
vide only slightly lower conservation returns (23.4%)
than our ideal “no cost constraint” scenario (27.4%).
Forty-four percent of species would still receive protec-
tion of 20% or more of their geographic ranges under this
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Figure 3 Zonation scenarios for marine protected areas in waters of

trawlable depth in New Zealand’s Exclusive Economic Zone, given vary-

ing constraints; highest conservation priorities are associated with low

ranking scores. A. Initial “no cost constraint” analysis with weighting of

endemic species and allowance for fragmentation effects; B. “full cost

constraint”—as for A, but using a fishing intensity layer to constrain site

selection; C. “BPA”—as for A, but cells falling within Benthic protection

areas (boundaries shown in red) were retained until all other grid cells had

been removed; D. mean benefits (top) and costs (bottom) as a function

of geographic protection of waters of trawlable depth in the Exclusive

Economic Zone for four Zonation scenarios.

scenario (Figure 4B), and endemic species still receive
60% higher protection than widespread species (33.4%
versus 20.9%, F-statistic = 9.91, P = 0.002). Importantly,
these returns would be achieved with no loss of cur-

rent fishing activity. While this lack of impact on current
fishing patterns is initially surprising, it reflects the man-
ner in which Zonation removed practically all fished sites
in the early stages of the analysis because of their low
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Figure 4 Comparison of the distributional range protection for species versus their range size, as provided by different Zonation scenarios, assuming

10% geographic protection: A—“no cost constraint”; B—“full cost constraint”; C—“BPAs.” Species range sizes are calculated as the percentage of the

total extent of New Zealand’s EEZ with depths in the range 200–1950 m. Dashed horizontal lines indicate 20% species range protection.

benefit-to-cost ratio—note the rapid decline in costs
in the early stage of cell removal for this scenario in
Figure 3D. It also reflects the availability of alternative
sites that have relatively high conservation value but
are not fished, presumably because of their relative lack
of commercial species or unsuitable conditions. This al-
lowed Zonation to identify a set of alternative, nonfished
sites with combined conservation values that are 85% of
those protected when selection is made without cost con-
straints.

The spatial configurations produced by our “modified
cost constraint” analyses provided a range of options in-
termediate between those produced by our “no cost con-
straint” and “full cost constraint” analyses (Figure S2).
Assigning a value of 1 to the tuning parameter (a in for-
mula 2) produces a spatial ranking that is most similar to
that produced by our “full cost constraint” scenario, while
assigning a value of 5 to the tuning parameter results in
a spatial ranking much more similar to our “no cost con-

straint” scenario. The benefit and cost curves also occupy
intermediate positions between the respective curves for
the “no cost constraint” and “full cost constraint” scenar-
ios, as shown for the scenario produced using a value of
2 for the tuning parameter in Figure 3D.

Use of Zonation to evaluate the conservation value
of BPAs proposed by the fishing industry, which com-
prise 16.6% of the trawlable parts of the EEZ, indicate
that these would deliver conservation benefits of 13.4%
protection of species’ ranges if all fishing was prohibited
within them. This would be achieved at a negligible fish-
ing opportunity cost of 0.3%. The best quality parts of
these reserves (Figure 3C and D), comprising 10% of
the trawlable parts of New Zealand’s EEZ, could poten-
tially deliver conservation returns of 10.4%, substantially
less than would be delivered by equivalent areas based
on our previous scenarios. At a species level, these best
parts of the BPAs protect 20% or more of the geographic
ranges of only six species (Figure 4C), all with limited
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distributions. Endemic species receive the same average
level of protection as those that are more widespread.

Discussion

Analytical issues

While our analysis is preliminary, it provides a pow-
erful demonstration of the ability of emerging tools to
integrate data and enable effective exploration of ma-
rine conservation scenarios over extensive offshore ar-
eas. Although statistical interpolation techniques are used
widely to achieve spatially comprehensive predictions of
species distributions in terrestrial settings, they are rarely
implemented in marine environments. Here they allowed
high-resolution prediction of species distributions over a
large geographic area, and these predictions in turn fa-
cilitated use of a conservation planning tool that focuses
on the design of networks optimized to provide balanced
protection of species. Although we could have performed
a similar analysis by target-based analysis using simulated
annealing, initial trials indicated that, given the size of
our study area, use of the most widely available imple-
mentation (Marxan) would have required substantial re-
duction in the spatial resolution of our data. Given the
rapid changes in species composition along steep envi-
ronmental gradients and marked local variation in fishing
intensity, carefully controlled aggregation of data would
be needed to minimize impacts on optimality of solutions
(cf. Richardson et al. 2006). We preferred to retain all de-
tails and to use nested rather than target-based solutions
for reserve selection.

Further development of several aspects of this analy-
sis would be desirable to enable it to contribute better
to operational planning. First, we assumed here that the
commercial value of trawling in different locations is pro-
portional to activity by commercial fishers, an approach
also used in other studies (e.g., Sala et al. 2002). This was
based on our understanding that spatial patterns of com-
mercial fishing reflect strongly its profitability because
strong economic constraints force fishers to focus their ef-
forts in the most profitable locations. Use of information
describing fishing patterns over longer time periods might
be desirable, but recent patterns probably best describe
current economic constraints, particularly those driven
by recent increases in fuel costs. Use of more sophisticated
profitability data would be possible, but would require a
high level of industry cooperation. Further exploration is
also required of the parameters used to describe the mo-
bility of different functional groups of species to encour-
age geographically compact solutions, but this is challeng-
ing, given the general lack of information on movement
of most offshore species. While our approach is empirical,

it allows biologically realistic aggregation with strongest
effects applied to highly mobile species.

One potential limitation of our analysis is its reliance on
biological data for only one functional group (demersal
fish). However, evidence from at least one recent study
(Colloca et al. 2003) supports the proposition that marine
ecosystems with high fish diversity also support a high di-
versity of other functional groups. In addition, for many
of the world’s oceans, data describing fish distributions
provides the only comprehensive description of biological
patterns, and must therefore be relied upon as a surro-
gate for broader ecosystem patterns. Nevertheless, these
methods are equally practicable if data for other biolog-
ical groups are available for use either on their own, or
in conjunction with fisheries data. Consideration should
also be given to variation in the source-sink roles played
by different parts of the geographic ranges of some species
(Leslie 2005). For example, for species that congregate in
large spawning aggregations, knowledge of where such
spawning occurs could be used to insure the protection
of these particularly high-value sites.

Use of catch data to define biologically rich areas could
be problematic in heavily fished areas, particularly given
the profound degree to which both the biomass and
size-class structures of many species are likely to have
been altered (Jennings & Blanchard 2004). In such sys-
tems, prediction of probability of catch alone might pro-
vide a more robust indication of former natural patterns
than predictions of abundance. Alternatively, definition
of MPAs in these settings might be more robust if based
on representative protection of geographic units defined
by bio-regionalizations defined using environmental fac-
tors driving ecosystem patterns (Snelder et al. 2006). Such
approaches may also have to be used in waters deeper
than around 2000 m, from which only limited biological
data are generally available.

Management implications

Our results identify a range of potential MPA options
that offer gradually increasing levels of protection to fish
species distributions, albeit at increasing cost through
loss of opportunity for fishing (Figure 5). Two partic-
ular features stand out. First, the stated policy objec-
tive of the New Zealand Government is to protect 10%
of its EEZ, presumably reflecting a desire to balance
conservation gains against the short-term costs incurred
to resource-based industries by declaring reserves. Our
results show that extending MPA coverage above this ex-
tent would not only deliver substantial increases in con-
servation benefits, but could also be achieved at minimal
cost. For example, increasing the extent of MPAs based
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Figure 5 Costs and benefits of defining MPAs based

on five Zonation scenarios in which cell selection was

influenced to varying degrees by data describing

spatial variation in fishing intensity during 2005.

Cost–benefit curves are shown for 10% and 20% levels

of geographic protection of waters with trawlable

depths, with symbols indicating results from particular

scenarios. The costs and benefits of reserves proposed

by the New Zealand fishing industry (BPAs) are shown

for comparison.

on our “full cost constraint” scenario from 10% to 20%
geographic coverage would increase average species pro-
tection by 50% (left of Figure 5). Importantly, this could
be achieved at minimal cost to the fishing industry, based
on their current patterns of fishing. In addition, such ben-
efits would exceed by almost 30% the best possible pro-
tection achievable when geographic protection is limited
to 10%, that is, when no consideration is given to loss of
fishing opportunity (our “no cost constraint” solution).
That solution would reduce fishing opportunity substan-
tially (22%), assuming fishing activity could not be relo-
cated elsewhere.

Second, the alternative Zonation scenarios that we de-
scribe deliver substantially greater conservation benefits
than BPAs recently implemented at the instigation of
fishers, even though these were designed to meet sim-
ilar objectives, that is, to provide representative protec-
tion across New Zealand’s EEZ while avoiding sites sub-
ject to fishing. By contrast, equivalent-sized MPAs based
on our “full cost constraint” scenario would deliver nearly
2.5 times the conservation benefits while also completely
avoiding areas currently fished. The little information
that is available on how the BPAs were selected indicates
that the process was essentially qualitative in nature.
Given the similarity in stated objectives, we therefore
conclude that these marked differences in outcome most
likely reflect the choices of data and methods used for

selecting reserves. Suboptimal solutions associated with
establishment of ad hoc reserves have also been reported
in studies elsewhere (e.g., Stewart et al. 2003). Clearly, in
this case the use of quantitative, data-driven tools would
have allowed the identification of reserves having much
greater representativeness, transparency, and efficiency
(Pressey et al. 1993). In practical terms, the relative ease
of use of the planning software that we used makes it
ideally suited for use in collaborative approaches to MPA
design involving a range of stakeholders, allowing con-
flicting objectives to be resolved in a transparent fashion
to produce outcomes more likely to satisfy the objectives
of all parties.

Finally, the most difficult challenges in defining MPAs
are likely to be political rather than technical (Lawton
2007). This reflects a range of factors, including diffi-
culties in defining protected areas in international wa-
ters, and resistance from those fishers who focus on the
perceived short-term loss of fishing opportunity result-
ing from MPA creation, but with minimal acknowledg-
ment of the long-term gains for wider ecosystem services.
In the context of these challenges, our research demon-
strates the ability of knowledge-based, cost–benefit
analyses to create opportunities for win–win decision
making that meets the objectives both of those with in-
terests in marine conservation and those who derive a
livelihood from the sea.

100 Conservation Letters 1 (2008) 91–102 c© 2008 Blackwell Publishing, Inc.



J. Leathwick et al. Designing offshore MPAs

Acknowledgments

We thank B. Cooper, C. Lundquist, M. Pinkerton, and
M. Pritchard for perceptive comments on the article, and
B. Sharp (Ministry of Fisheries) for his interaction on
technical issues. Financial support was provided by the
New Zealand Foundation for Research Science and Tech-
nology (C01X0502), Department of Conservation, and
Ministry of Fisheries. A.M. was supported by funding
from the Academy of Finland and by ACERA, University
of Melbourne, and J.E. by ARC grant DP0772671. The
trawl data used to model species distributions came from
the New Zealand Ministry of Fisheries research trawl
database, which was subsequently groomed extensively
by NIWA staff. We thank the Ministry of Fisheries for
access to commercial trawl start locations for the 2005
year.

Supplementary Material

The following supplementary material is available for this
article:

Appendix S1. Additional methodological information
about Zonation, including sensitivity analyses for species
weighting and spatial effects.

Figure S1. Fishing intensity cost layer.
Figure S2. Zonation results when using modified costs

layers.
Table S1. Environmental and trawl predictors.
This material is available as part of the online article

from:
http://www.blackwell-synergy.com/doi/full/10.1111/

j.1755-363X.2008.00012.x
(This link will take you to the article abstract).

Please note: Blackwell Publishing are not responsible
for the content or functionality of any supplementary
materials supplied by the authors. Any queries (other
than missing material) should be directed to the corre-
sponding author for the article.

References
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